A Tk OpenGL widget

Claudio Esperanca
1. Introduction

OpenGL is becoming a standard Application Program Interface (API) for writing portable 3D computer
graphics programs. On the other hand, the Tk toolkit offers a portable and powerful environment for the
development of graphical user interfaces. It is to be expected then, that the merging of both capabilities
should appeal to a wide audience. In fact, many attempts to do exactly that have been reported, but for
one or other reason, they did not match my expectations. As a consequence, | have decided to write my
own package, which | hope will prove to be useful to others who wish to write portable applications where
3D graphics and graphical user interfaces are required.

This project started out before | had a more complete understanding of OpenGL or, perhaps, just because
of that. For this reason, my choice of a subset of the OpenGL functionality may not be powerful enough
for some, and the way this functionality has been implemented as a series of Tk widget commands may
prove to be a bit too awkward. On the other hand, | included a few utility features that are not part of the
OpenGL standard, but which | felt would increase the usefulness of this package.

The package was initially developed on an IBM RS-6000 workstation running AlX v3.2.5 and tested both
with “real” OpenGL and with a free implementation of the OpenGL API, namely, the Mesa 3-D graphics
library. It was later ported to PCs running Microsoft’'s OpenGL implementation under Windows95.
Currently, the package is known to work with Tcl 7.5 and Tk 4.1. The distribution contains source code
and Makefiles for some popular architecture/operating system combinations. In order to facilitate its
installation in PCs, a pre-compiled DLL (dynamically loadable library) is also provided. Please see the
installation instructions included in the distribution.

2. Getting started

The integration between OpenGL and Tk is achieved by a package called Tkogl , which in Unix-based
installations is statically linked in the extended Tcl/Tk windowing shell called gl wi sh. Under
Windows95, the package can be dynamically loaded by executing a corresponding package require
command. In any case, you should aways include in your Tcl script the following line:

package require Tkogl
Once it is ascertained that the package is loaded, you may open one or more windows for displaying

OpenGL graphics. Such windows can be created in a similar way to other Tk widgets by using the
OGLwi n command, which has the following format:

OGLwi n pathName ? option ... ?
where each option can be one of the following:

-accunsi ze accumSze specifies that the accumulation buffer should support accumSze hit planes
for each of the red, green and blue components. If an alpha component for the color buffer has
been requested, the same number of bit planes is aso requested for the alpha component of the
accumulation buffer. By default, no accumulation buffer is requested.

- al phasi ze alphaSze specifies that the color buffer should support alphaSze bit planes for the
alpha component. By default, no alpha bit planes are requested.

-aspectrati o ratioforcesthe viewport of the window to the width/height fraction given by ratio,
which should be a positive floating point number. The viewport is then defined as the biggest
possible rectangle with the specified aspect ratio centered inside the window. If ratio is 0.0 (the
default), no aspect ratio is enforced, which means that the viewport will aways take the same
shape as the window.

- cont ext pathName2 makes the OpenGL context of pathName share display lists with that of
pathName2, which should also be the name of an OGLwin widget.

- dept hsi ze depthSze specifies the number of bit planes for the depth buffer (also called z-buffer).
By default, this number is 16. A depthSze of 0 means that no depth buffer is required.

- doubl ebuf f er doubleFlag specifies whether or not a double buffered visual will be used (true, by
default).

- hei ght height specifiesthe height of the window in pixels. Default:300.

- st enci | si ze stencilSze specifies the number of bit planes requested for the stencil buffer (zero,
by default).

- Wi dt h width specifies the width of the window in pixels. Default:300.

Currently, OGLwin can only be used to create windows which will use the RGBA color model. By defaullt,
OGLwin creates a double-buffered RGB window with the biggest number of bitplanes supported by the
current software/hardware environment. The configuration options described above can be used to allocate
additional buffers, e.g., an accumulation or a stencil buffer. If the requested buffers cannot be allocated,
then OGLwin fails, producing a standard Tcl error result.

An OpenGL window is typically created for visualizing a series of graphical objects. In most window
systems, the contents of the window must be redrawn every once in a while, for instance, when the
window is resized or deiconified. Usually, quite a few OpenGL rendering commands must be executed in
order to reproduce the contents of the window. Although we aim to be able to generate any OpenGL
command from within a Tcl script, it would be very time-consuming to interpret a very long sequence of
Tcl commands every time a given OpenGL window needed to be redrawn. Fortunately, OpenGL offers a
display list capability, whereby several commands can be pre-compiled and stored in the display server,
ready to be re-executed as needed. Thus, a sensible management of an OpenGL window (such as the one
created by the OG.wi n command) is to reserve a display list which will contain al rendering commands
that are to be executed whenever the window needs to be redrawn. In this document, we refer to such alist
as the main list. In addition to calling the main list whenever a redraw is needed, the widget issues
glFlush command and takes care of swapping the front and back buffers (when a double-buffered visual is
being used). The contents of the main display list can be redefined by means of the mai nl i st widget
command, which has the following format:

pathName mai nl i st ? option ... option ?
where
pathName isthe name of an OpenGL window.

option is one of the OpenGL commands currently supported by the package. These will be
described later on.

For example, avery minimal script that creates a window to display atriangle can be written as follows:

oGwi n . gl

pack . gl

.gl main -clear colorbuffer \
-begin triangles \
-vertex -1 -1\
-vertex 0 1\
-vertex 1 -1\
-end

Example 1: A simple script to display atriangle.

Iy Clandio’ TkOGLY testh testsim... H=1E1

Figure 1: Display produced by the script of Example 1

Notice that the script above relies on several variables of the OpenGL state machine having their initial
default values. For instance, the default value of the Color state is white, while the the default value of the
ClearColor stateisblack, which means that the triangle will be drawn in white over a black background.

Instead of using the main display list mechanism for keeping the window updated, it is also possible set up
a script to be executed every time an Expose event is caught by Tk. In this case, instead of using the main
widget command to set up the main display list, the same OpenGL commands can be issued by means of
the eval widget command, which has the following syntax:

pathName mai nl i st ? option ... option ?
where pathName and option have the same meanings asin the mai nl i st command.

Thus, Example 1 could be rewritten in the following way:

pack . gl
bind . gl <Expose> {

.gl eval -clear colorbuffer \
-begin triangles \
-vertex -1 -1\

-vertex 0 1\
-vertex 1 -1\
-end

}

Example 2: Displays a diagonal line by catching Expose events and redrawing the picture
with the eval widget command.

It should be noticed that the default display list mechanism is usually superior to catching events and
redisplaying the picture. This is because in the former case all OpenGL commands are already stored in a
display list in the server, while in the latter case, all commands must be reinterpreted and transmitted
from the client to the server every time the window must be redrawn.

3. Summary of OpenGL option commands

Many OGLwin widget commands (e.g., eval , mai nl i st) require alist of options that denote OpenGL
commands. The overall format of such optionsis

glCommandName ? arg ... arg ?

where

glCommandName is a Tcl string that denotes an equivalent OpenGLcommand. The string
corresponding to a given OpenGL procedure is the name of that procedure with all letters in
lower case and stripped of its gl prefix and of eventual data type suffix. Thus, for instance,
procedure glMatrixMode corresponds to option -matri xnode, procedure glColor3f
corresponds to option - col or , and so on.

argisaTcl string equivalent to an argument in the corresponding OpenGL command. The following
rules are useful to determine how OpenGL procedure arguments are mapped into equivalent Tcl
strings:

Arguments of type GLenum are mapped into an all lowercase string with the same spelling
as that of the equivalent constant, except that the GL prefix is dropped, as well as any
underscore (*_) characters. For example, GL_DEPTH_TEST becomesdept ht est .
Numeric arguments are represented by equivalent Tcl strings. Integer types (e.g. GLint,
GLuint) are parsed as integer Tcl values and floating-point types (e.g., GLfloat,
GLdouble) are parsed as floating-point values.

When the same OpenGL function supports both integer and floating-point variants of the
same function, the floating-point (GL float) variant is implemented. For example, command

-color 100
isthe same as
glColor 3f (1.0, 0.0, 0.0);

If an OpenGL procedure requires a vector argument, this is supported by spelling out the
contents of the vector as discrete arg’s. For instance, the “C” code fragment

GLfloat ctrlpoints [4][3] ={
{-4.0,-4.0, 0.0, {-2.0, 4.0, 0.0,
{2.0,-4.0,0.0,{4.0,4.0,0.0

glMapif (GL_MAPL1 VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpointg0][Q]);
would be trandated into Tcl as

-mapl maplvertex3 0 1 3 4 \
4 -40 -240 2-40 440

In the case of procedures such as glClear, which require bit masks as arguments, the

individual bit mask constants are mapped to strings in much the same way as GLenum

constants, except that the BIT suffix is also dropped. Furthermore, the bit mask is assumed

to be abitwise “or” ofal arg’s. For instance,

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

becomes
-cl ear col orbuffer depthbuffer

Not all OpenGL procedures have equivalent option commands. In a few cases, the argument lists of an
option command and its associated OpenGL procedure have slightly different argument lists, chiefly those
that deal with textures and images. Also, some procedures of the OpenGL Utility Library (glu) were also
implemented as option commands. We list below the syntax of al OpenGL functions currently
implemented and the syntax of their associated option commands. The full description of each OpenGL
function can be found in the OpenGL reference manual.

OpenGL command | TkKOGL option command | TKOGL option arguments

glAccum -accum operation value

glAlphaFunc - al phafunc function reference

glBegin - begin primitive

glBlendFunc - bl endf unc sFactor dFactor

glCallList -cal | displayListNo
-calllists

glClear - cl ear bitMaskConst ? bitMaskConst ...

glClear Accum - cl earaccum red green blue ? alpha ?

glClear Color - cl earcol or red green blue ? alpha ?

glClear Depth -cl eardepth depth

glClear Stencil -clearstencil stencil

glColor - col or red green blue ?alpha?

glColorMask - col or mask red green blue ?alpha?

glColorMaterial -col ormateri al face mode

glCopyPixels - copypi xel s X y width height

glDepthFunc - dept hf unc func

glDepthMask - dept hmask flag

glDisable - di sabl e capability

glDrawBuffer - drawbuf f er mode

glDrawPixels - dr awpi xel s photol mageName

glEdgeFlag - edgef | ag flag

glEnable -enabl e capability

glEnd -end

glEndList -endl i st

glEvalCoord1l -eval coordl u

glEvalCoord2
glEvalMeshl
glEvalM esh2
glFinish
glFlush

glFog
glFrontFace
glFrustum
glHint
gllnitNames
glLight
glLightModel
glLineStipple
glLinewWidth
glL ocadl dentity
glLcadM atrix

glL oadName
gluL ook At

gMapl
glMap2

olMapGridl
oM apGrid2
glMaterial
glMatrixMode
glMultMatrix
olNewL ist
glNormal
glOrtho

gluPer spective
gluPickMatrix
glPixel Transfer
glPixelZoom
glPointSize
glPolygonM ode
glPopMatrix
glPopName
glPushMatrix

glPushName
glRaster Pos
glReadBuffer
glReadPixels
glRect
oRotate
glScale

ol Scissor
glShadeM odel
glStencilFunc
glStencilM ask

-eval coord2
-eval neshl
-eval nesh2
-finish
-flush

-fog
-frontface
-frustum

- hi nt
-initnanes
-1ight

-1i ght node
-linestipple
-linewidth
-l oadi dentity
-l oadnmat ri x

- | oadname
- | ookat

-mapl
- map2

-mapgridl
-mapgri d2
-materi al
-mat ri xnode
- nodel vi ew
-new i st

- nor mal
-ortho

- perspective
- pi ckmat ri x
- pi xel transfer
- pi xel zoom

- poi ntsi ze

- pol ygonnode
- popmat ri x

- popnane

- pushmat ri x

- pushnane
-rasterpos
-readbuf f er
-readpi xel s
-rect
-rotate
-scal e

- sci ssor

- shadenodel mode
-stencil func
-stenci |l nask

uv
modeili2
modeili2jlj2

param paramValue ? paramValue ... ?
mode

left right bottom top near far

target mode

light parameterName parameter ?parameter ... ?
parameter Name parameter ?parameter...?
factor pattern

width

Mp,0 My,0 Mp,0 Mg 0 Mp,1 My 1 Mp 1 Mg 1 Mo2 My 2 Mo
M32Mp3 M 3NMp3M3

name

eyeX eyeY eyeZ center X centerY centerZ upX upY
upZ

target ul u2 stride order pointCoord ?pointCoord ...
?

target ul u2 uStride uOrder v1 v2 vSride vOrder
pointCoord ? pointCoord ... ?

uN ul u2

uN ul u2 vN v1 v2

face paramName param ? param ... ?

mode

mode

list mode

Xyz

left right bottom top near far

fieldOfViewY aspectRatio zZNear zFar

X'y width height

paramName param

xFactor yFactor

size

face mode

Mp,0 My0 Mp,o Mg 0 Mp,1 My 1 Mp 1 M1 Mo2 My 2 Mo
Mz2 Mp3 My 3Mp3M33

name

Xy?z??w?

mode

X y photolmageName

X1yl x2y2

anglexyz

Xyz

X y width height

function reference mask
mask

glStencilOp -stencil op fail zZFail zZPass

glTexCoord -texcoord s?t??2q?7?r?

glTexEnv -texenv target paramName param ? param ... ?
glTexGen -texgen coordinate paramName param ? param ... ?
gl TexImagelD -t exi mageld level border photol mageName

gl TexI mage2D -t exi mage2d level border photol mageName

gl TexParameter -texparanet er target paramName param ? param ... ?
glTrandate -transl ate Xyz

glVertex -vertex Xy?z?2?2w?

4. OGLwin widget commands

Although most of OpenGL’s capahilities could be exercised by using the eval and mai nl i st widget
commands, certain common tasks may be more easily programmed with the use of a few additiona
commands. Below we describe all the available commands for the OGLwin widget.

pathName conf i gur e ?option? ?value? ?option value ...?

Query or modify the configuration options of the widget. If no option is specified, returns alist
describing al of the available options for pathName. If option is specified with no value, then the
command returns a list describing the one mentioned option. If one or more option-value pairsis
specified, then the command modifies the given widget option(s). Note: only the - wi dt h and
the - hei ght options can be modified by the conf i gur e command; all others can only be
specified at the time the widget was created and cannot be modified afterwards.

pathNamecyl i nder ?-di spl aylist dlist??-normal s normals? ?-drawstyl e drawltyle?
?-orientation orientation? ?-t exture texture? baseRadiustopRadius height slices
stacks

Renders a cylinder using the GLU facilities for quadrics (refer to the gluCylinder function). By
default, the rendering is compiled into a new display list whose number is returned as the result
of the widget command. If a display list number dlist is specified by means of the -
di spl ayl i st option, then that list is used. As a specia casg, if dlist is specified as none, the
rendering is performed immediately, and no display list is generated or overwritten. The
remaining options correspond to rendering styles as implemented by functions
gluQuadricNormals, gluQuadricDrawsStyle, gluQuadricOrientation and
gluQuadricTexture, respectively. The possible option values are lowercase strings derived from
corresponding symbolic constants. Thus, for instance, - nor mal s fl at corresponds to calling
gluQuadricNormals with an argument equal to GLU_FLAT.

pathName del et el i st listNumber

Deallocates the display list specified by listNumber.

pathName di sk ?-di spl ayl i st dlist? ?- nor mal s normals? ?-drawstyl e drawXtyle?
?-orientation orientation? ?-t exture texture? innerRadius outer Radius slices loops

Renders a disk using the GLU facilities for quadrics (refer to the gluDisk function). All options
work in the same fashion asin the cyl i nder command.

pathName eval ?option ... option?

Sends the OpenGL commands defined by the given options (for a description of these, refer to the
previous section) directly to the OpenGL engine. Note that the effect of the these commands will
only be visible after the window is refreshed. This happens automatically after an Expose event is
handled by the widget, but can be forced programatically by issuing a redraw widget
command.

pathName mai nl i st “?option ... option?

Creates a display list containing the OpenGL commands defined by the given options (for a
description of these, refer to the previous section) and sets up the widget to call that list every
time an Expose or Configure event is sent to the corresponding window. By default, this main list
contains no OpenGL commands, i.e., nothing is drawn.

pathName new i st ?listNum? ?option ... option?

Defines a new display list containing the OpenGL commands specified by the given options (for
a description of these, refer to the previous section). If listNum is specified, the contents of the
corresponding display list is redefined. Otherwise, a new display list is allocated. The number
corresponding to the redefined or newly allocated display list is returned, so that it can be
invoked by means of the -call option. The new i st widget command combines the
functionality of OpenGL subroutines glGenLists, gINewList and glEndList.

pathName nur bssurface -uknots knot ?knot...? - vknots knot ?knot ...? - contr ol poi nts
coord ?coord ...? ?-type type??-uorder order? ?-vorder order?
?-sanpl i ngt ol erance tol? ?-di spl aynode mode? ?-cul | i ng cull?

Implements a simple interface to gluNur bsSurface and other related GLU functions. It renders a
nurbs surface into a display list whose number is returned as the result of the command. The only
mandatory options are - uknot s and - vknot s which specify the sequence of knots in the u
and v directions, respectively, and - cont r ol poi nt s, which is followed by the coordinates of
the control points. The remaining options control other parameters of gluNurbsSurface and
rendering parameters usualy set with gluNurbsProperty. The default values for these are as
follows. -t ype map2vertex3 (i.e, GL_MAP2 VERTEX_3); -uorder 4 -vorder 4
(cubic polynomials); - sanpl i ngt ol erance 50 (pixels); -di spl aynode fill (i.e,
GLU FILL); -culling no (i.ee GL_FALSE). Notice that the command takes care of
computing remaining parameters such as uStride and vStride by counting the number of knot
values and control point coordinates given.

pathNameparti al di sk ?-di spl ayl i st dlist? ?-normal s normals? ?-drawstyl e
drawStyle? ?-ori entati on orientation? ?-t ext ur e t exture? innerRadius outerRadius
dlices loops startAngle sweepAngle

Renders a partial disk using the GLU facilities for quadrics (refer to the gluPartialDisk
function). The options are the same as those of the cyl i nder command.

pathName pr oj ect worldX worldY worldZ

This command provides access to the functionality of the gluProject OpenGL utility function.
worldX, worldY and worldZ are the world coordinates of a point and, as aresult, alist containing
the corresponding three window coordinates is returned. The command takes care of retrieving
from the the other arguments of gluProject, such as the viewport, projection and modelview
matrices. It also takes care of the correction of the value for the y coordinate due to the fact that

they axisin OpenGL is defined to run from the bottom to the top of the screen, while the window
coordinate system in X and MS-Windows defines y to run from top to bottom.

pathNamer edr aw

Forces the window to be redisplayed. This involves calling the main display list (see the
mai nl i st widget command), flushing al pending commands by calling glFlush, and
swapping the front and back buffersif a double-buffered visual is being used.

pathName sel ect hitBufferSze ?option ... option?

Evaluates the OpenGL commands corresponding to the given options in selection mode and
returns the contents of the hit buffer as a Tcl list. In other words, this command is equivalent to
calling giRenderMode (GL_SELECT), issuing the commands corresponding to each option
and then calling giRenderMode (GL_RENDER). A hit buffer containing hitBuffer Sze wordsis
dynamically allocated to store the contents of the hit buffer for the duration of the command.

The format of the returned Tcl list mimics that of the hit buffer. Each hit record corresponds to
one element of the list. The first element of the hit record is the number of names on the name
stack; the second (third) element is the minimum (maximum) z value of all vertices of the
primitives that intersected the viewing volume since the last recorded hit in floating point format;
and the remaining elements are the contents of the name stack at the time of the hit, with the
bottommaost element first. See the discussion in Chapter 12 of the OpenGL Programming Guide
for more details.

pathName t essel ate ?-di spl ayli st dlist??-noedgefl ags? xyz.. ?-contour xyz...
?

Renders a complex polygon using the facilities of the GLU tesselator. The vertices of the polygon
are specified by their coordinates x, y and z The - cont our option can be used to specify the
different polygon boundaries (i.e, “holes’). By default. the rendering is compiled into a new
display list whose number is returned by the widget command. If the - di spl ayl i st option is
used, the specified dlist is used instead. In the special case where dlist is specified as none, no
display list is generated, and the rendering takes place immediately. Unless option -
noedgef | ags i s specified, the rendering will flag internal triangle edges, which is useful if
the polygon isrendered using al i ne style.

pathName sphere ?-di spl ayli st dlist??-normal s normals? ?-drawstyl e drawltyle?
?-orientation orientation? ?-texture texture? radius slices stacks

Renders a sphere using the GLU facilities for quadrics (refer to the gluSphere function). The
options are the same as those of the cyl i nder command.

pathName unpr oj ect windowX windowY windowZ

This command provides access to the functionality of the gluUnProject OpenGL utility
function. windowX, windowY and windowZ are window coordinates and the result is a list with
the corresponding world coordinates. The handling of the remaining values necessary to compute
this operation is done in the same way described for the pr oj ect command.

5. OGLwin extensions

The OGLwin widget provides a mechanism for incorporating user-defined extension commands written in
“C”. This mechanism isimplemented by means of procedure Register TKOGL Extension with the
following syntax:

int Register TKOGL Extension (Tcl_Interp* interp,
char* extname,
TkOGLExtProc* extproc)

where
interp is a pointer to the main Tcl interpreter.
extname is a string that will designate the extension widget command.

extproc is a pointer to a procedure which implements the extension. This procedure should have the
following prototype:

int MyExtensionPraoc (Tcl_Interp* interp, int argc, char ** argv);
In order to register a given extension to the OGLwin widget, Register TkOGL Extension must be called
in the initialization code for the application, after the Tkogl package isloaded and initialized.

As an example, consider the initialization code used to build a glwish application where an extension
called MyExtensionProc is defined (seefilet KAppl ni t. ¢ inthe distribution sources):

int Tcl _Applnit(Tcl _Interp *interp)

Tk_W ndow nai n;
mai n = Tk_Mai nW ndow(i nt erp);

if (Tcl_Init(interp) == TCL_ERROR) return TCL_ERROR;
if (Tk_Init(interp) == TCL_ERROR) return TCL_ERROR
if (TkOA_Init(interp, main) == TCL_ERROR) return TCL_ERROR;

i f (Register TkKOGALExt ension (interp, "myextension", MExtensionProc)
= TCL_OK) return TCL_ERROR

Tcl _SetVar (interp, "tcl_rcFileNane", "~/.wi shrc", TCL_G.OBAL_ONLY);
return TCL_CK;

This code defines a default extension built into glwish called "myextension” which will be available for
any OGLwin window created by glwish. Thus, you might be able to write a script with something like:

pack [OGwi n .gl]
.gl nyextension foo bar

6. Thegencyl extension

The generic cylinder extension provides a relatively straightforward way of rendering arbitrary surfaces.
The surface is obtained by sweeping a curve (termed a cross-section shape) along a path in 3D space.
Initially, the cross-section shape is a square of side length equal to 2 centered at the origin and lying over
the x-y plane. The movement of the cross-section is controlled by applying affine linear

transformations (e.g., tranglation, rotation, scale) to the cross-section shape. For each two consecutive
positions of the cross-section, triangles are rendered joining corresponding vertices and edges.

The syntax of thegencyl extensionis:

pathName gencyl option ?option ...?
where pathName is the name of the OGLwin widget and option can be one of the following:
-Cross xyzXxyz..?

Replaces the current cross-section shape with the polygon defined by the vertices with the given
coordinates x, y, z

-identity

Replaces the current transformation matrix with the identity matrix.
- pl ot
Plots a new cross-section, i.e., applies the currently defined transformation matrix to the cross-

section shape. If it is not the first cross-section to be generated, draws triangles linking vertices of
this cross-section with corresponding vertices of the previous cross-section.

- pol ygon radius nSdes

Replaces the current cross-section shape with a regular polygon of radius radius and nSdes sides.
The polygon is centered at the origin and lies over the x-y plane.

-rotateanglexyz

Multiplies the current transformation matrix by a matrix corresponding to the rotation of angle
degrees around the vector defined by x y z Thisis similar to the effect of procedure glRotate.

-scalexyz

Multiplies the current transformation matrix by a general scaling matrix defined by parameters x
y z. Thisis similar to the effect of procedure glScale.

- shade shadeModel

Defines the type of vertex normals generated for the triangles. If shadeModel isf | at , the same
normal is generated for all three vertices, namely, the triangle normal. If shadeMode is
snoot h (the default), vertex normals are averaged over all incident triangles.

-stitch stitchSyle

Defines the overall topology of the generated surface. If stitchStyle is| oops (the default), cross-
sections are generated as closed curves, i.e., the first and last vertex of each cross-section are
linked together. If stitchStyle is ends, the first and the last generated cross-sections are linked
together. If stitchStyle isbot h the effect of | oops and ends is combined. Finally, if stitchStyle
is none, no linking takes place. Generally speaking, bot h corresponds to the topology of a
torus, while none corresponds to the topology of a disk.

-texgen minSmaxSminT maxT

Specifies the generation of texture coordinate values. minS and maxS refer to the range of values
for texture coordinate s, whereas minT and maxT refer to the range of values for texture
coordinate t. Texture coordinates are generated so as to have the s coordinate varying along each
cross-section, while the t coordinate is associated with the path each point of the cross-section
shape describes as each cross-section is plotted.

-translate xyz

Multiplies the current transformation matrix by the translation matrix defined by xy z

Notice that gencyl does not use the model view matrix to compute transformations. In fact, the only
OpenGL commands emitted by gencyl are gINormal, glVVertex and gl TexCoord.

The result string returned by the gencyl command is a property list of the form
{displaylist d} {min mnX mnY mnZ} {max maxX maxY mxZ}
where

d is the number of the display list generated. This number can be used in conjunction with the
- cal | option command to display the surface.

minX minY minZ and maxX maxY maxZ define the coordinates of a bounding box for all the
generated vertices. These can be used in order to calculate apropriate viewing parameters.

As an example, consider the following script that renders a 8-sided approximation of a circular cylinder of
unit height and radius:

pack [OGwi n .gl]
set | [.gl gencyl -polygon 1 8 -plot \
-translate 0 0 1 -plot]
set d [lindex [lindex $I 0] 1]
.gl eval -matrixnode projection \
-l oadi dentity \
-perspective 30 1 1 10\
-mat ri xnode nodel vi ew \
-l oadi dentity \
-lookat 55500000 1\
-enable lightO \
-enable lighting \
- enabl e dept ht est
.gl main -clear colorbuffer depthbuffer -call $d

