
A Tk OpenGL widget

Claudio Esperança

1. Introduction

OpenGL is becoming a standard Application Program Interface (API) for writing portable 3D computer
graphics programs. On the other hand, the Tk toolkit offers a portable and powerful environment for the
development of graphical user interfaces. It is to be expected then, that the merging of both capabilities
should appeal to a wide audience. In fact, many attempts to do exactly that have been reported, but for
one or other reason, they did not match my expectations. As a consequence, I have decided to write my
own package, which I hope will prove to be useful to others who wish to write portable applications where
3D graphics and graphical user interfaces are required.

This project started out before I had a more complete understanding of OpenGL or, perhaps, just because
of that. For this reason, my choice of a subset of the OpenGL functionality may not be powerful enough
for some, and the way this functionality has been implemented as a series of Tk widget commands may
prove to be a bit too awkward. On the other hand, I included a few utility features that are not part of the
OpenGL standard, but which I felt would increase the usefulness of this package.

The package was initially developed on an IBM RS-6000 workstation running AIX v3.2.5 and tested both
with “real” OpenGL and with a free implementation of the OpenGL API, namely, the Mesa 3-D graphics
library. It was later ported to PCs running Microsoft’s OpenGL implementation under Windows95.
Currently, the package is known to work with Tcl 7.5 and Tk 4.1. The distribution contains source code
and Makefiles for some popular architecture/operating system combinations. In order to facilitate its
installation in PCs, a pre-compiled DLL (dynamically loadable library) is also provided. Please see the
installation instructions included in the distribution.

2. Getting started

The integration between OpenGL and Tk is achieved by a package called Tkogl, which in Unix-based
installations is statically linked in the extended Tcl/Tk windowing shell called glwish. Under
Windows95, the package can be dynamically loaded by executing a corresponding package require
command. In any case, you should always include in your Tcl script the following line:

package require Tkogl

Once it is ascertained that the package is loaded, you may open one or more windows for displaying
OpenGL graphics. Such windows can be created in a similar way to other Tk widgets by using the
OGLwin command, which has the following format:

OGLwin pathName ? option ... ?

where each option can be one of the following:

-accumsize accumSize specifies that the accumulation buffer should support accumSize bit planes
for each of the red, green and blue components. If an alpha component for the color buffer has
been requested, the same number of bit planes is also requested for the alpha component of the
accumulation buffer. By default, no accumulation buffer is requested.

-alphasize alphaSize specifies that the color buffer should support alphaSize bit planes for the
alpha component. By default, no alpha bit planes are requested.

-aspectratio ratio forces the viewport of the window to the width/height fraction given by ratio,
which should be a positive floating point number. The viewport is then defined as the biggest
possible rectangle with the specified aspect ratio centered inside the window. If ratio is 0.0 (the
default), no aspect ratio is enforced, which means that the viewport will always take the same
shape as the window.

-context pathName2 makes the OpenGL context of pathName share display lists with that of
pathName2, which should also be the name of an OGLwin widget.

-depthsize depthSize specifies the number of bit planes for the depth buffer (also called z-buffer).
By default, this number is 16. A depthSize of 0 means that no depth buffer is required.

-doublebuffer doubleFlag specifies whether or not a double buffered visual will be used (true, by
default).

-height height specifies the height of the window in pixels. Default:300.

-stencilsize stencilSize specifies the number of bit planes requested for the stencil buffer (zero,
by default).

-width width specifies the width of the window in pixels. Default:300.

Currently, OGLwin can only be used to create windows which will use the RGBA color model. By default,
OGLwin creates a double-buffered RGB window with the biggest number of bitplanes supported by the
current software/hardware environment. The configuration options described above can be used to allocate
additional buffers, e.g., an accumulation or a stencil buffer. If the requested buffers cannot be allocated,
then OGLwin fails, producing a standard Tcl error result.

An OpenGL window is typically created for visualizing a series of graphical objects. In most window
systems, the contents of the window must be redrawn every once in a while, for instance, when the
window is resized or deiconified. Usually, quite a few OpenGL rendering commands must be executed in
order to reproduce the contents of the window. Although we aim to be able to generate any OpenGL
command from within a Tcl script, it would be very time-consuming to interpret a very long sequence of
Tcl commands every time a given OpenGL window needed to be redrawn. Fortunately, OpenGL offers a
display list capability, whereby several commands can be pre-compiled and stored in the display server,
ready to be re-executed as needed. Thus, a sensible management of an OpenGL window (such as the one
created by the OGLwin command) is to reserve a display list which will contain all rendering commands
that are to be executed whenever the window needs to be redrawn. In this document, we refer to such a list
as the main list. In addition to calling the main list whenever a redraw is needed, the widget issues
glFlush command and takes care of swapping the front and back buffers (when a double-buffered visual is
being used). The contents of the main display list can be redefined by means of the mainlist widget
command, which has the following format:

pathName mainlist ? option ... option ?

where

pathName is the name of an OpenGL window.

option is one of the OpenGL commands currently supported by the package. These will be
described later on.

For example, a very minimal script that creates a window to display a triangle can be written as follows:

OGLwin .gl
pack .gl
.gl main -clear colorbuffer \

-begin triangles \
-vertex -1 -1 \
-vertex 0 1 \
-vertex 1 -1 \
-end

Example 1: A simple script to display a triangle.

Figure 1: Display produced by the script of Example 1

Notice that the script above relies on several variables of the OpenGL state machine having their initial
default values. For instance, the default value of the Color state is white, while the the default value of the
ClearColor state is black, which means that the triangle will be drawn in white over a black background.

Instead of using the main display list mechanism for keeping the window updated, it is also possible set up
a script to be executed every time an Expose event is caught by Tk. In this case, instead of using the main
widget command to set up the main display list, the same OpenGL commands can be issued by means of
the eval widget command, which has the following syntax:

pathName mainlist ? option ... option ?

where pathName and option have the same meanings as in the mainlist command.

Thus, Example 1 could be rewritten in the following way:

pack .gl
bind .gl <Expose> {
 .gl eval -clear colorbuffer \

-begin triangles \
-vertex -1 -1 \
-vertex 0 1 \
-vertex 1 -1 \
-end
}

Example 2: Displays a diagonal line by catching Expose events and redrawing the picture
with the eval widget command.

It should be noticed that the default display list mechanism is usually superior to catching events and
redisplaying the picture. This is because in the former case all OpenGL commands are already stored in a
display list in the server, while in the latter case, all commands must be reinterpreted and transmitted
from the client to the server every time the window must be redrawn.

3. Summary of OpenGL option commands

Many OGLwin widget commands (e.g., eval, mainlist) require a list of options that denote OpenGL
commands. The overall format of such options is

glCommandName ? arg ... arg ?

where

glCommandName is a Tcl string that denotes an equivalent OpenGLcommand. The string
corresponding to a given OpenGL procedure is the name of that procedure with all letters in
lower case and stripped of its gl prefix and of eventual data type suffix. Thus, for instance,
procedure glMatrixMode corresponds to option -matrixmode, procedure glColor3f
corresponds to option -color, and so on.

arg is a Tcl string equivalent to an argument in the corresponding OpenGL command. The following
rules are useful to determine how OpenGL procedure arguments are mapped into equivalent Tcl
strings:

• Arguments of type GLenum are mapped into an all lowercase string with the same spelling
as that of the equivalent constant, except that the GL prefix is dropped, as well as any
underscore (‘_’) characters. For example, GL_DEPTH_TEST becomes depthtest.

• Numeric arguments are represented by equivalent Tcl strings. Integer types (e.g. GLint,
GLuint) are parsed as integer Tcl values and floating-point types (e.g., GLfloat,
GLdouble) are parsed as floating-point values.

• When the same OpenGL function supports both integer and floating-point variants of the
same function, the floating-point (GLfloat) variant is implemented. For example, command

-color 1 0 0

is the same as

glColor3f (1.0, 0.0, 0.0);

• If an OpenGL procedure requires a vector argument, this is supported by spelling out the
contents of the vector as discrete arg’s. For instance, the “C” code fragment

GLfloat ctrlpoints [4][3] = {
 {-4.0, -4.0, 0.0, {-2.0, 4.0, 0.0,
 {2.0, -4.0, 0.0, {4.0, 4.0, 0.0

glMap1f (GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]);

would be translated into Tcl as

-map1 map1vertex3 0 1 3 4 \
4 -4 0 -2 4 0 2 -4 0 4 4 0

• In the case of procedures such as glClear, which require bit masks as arguments, the

individual bit mask constants are mapped to strings in much the same way as GLenum
constants, except that the _BIT suffix is also dropped. Furthermore, the bit mask is assumed
to be a bitwise “or” ofall arg’s. For instance,

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

becomes

-clear colorbuffer depthbuffer

Not all OpenGL procedures have equivalent option commands. In a few cases, the argument lists of an
option command and its associated OpenGL procedure have slightly different argument lists, chiefly those
that deal with textures and images. Also, some procedures of the OpenGL Utility Library (glu) were also
implemented as option commands. We list below the syntax of all OpenGL functions currently
implemented and the syntax of their associated option commands. The full description of each OpenGL
function can be found in the OpenGL reference manual.

OpenGL command TkOGL option command TkOGL option arguments
glAccum -accum operation value
glAlphaFunc -alphafunc function reference
glBegin -begin primitive
glBlendFunc -blendfunc sFactor dFactor
glCallList -call

-calllists
displayListNo

glClear -clear bitMaskConst ? bitMaskConst ... ?
glClearAccum -clearaccum red green blue ? alpha ?
glClearColor -clearcolor red green blue ? alpha ?
glClearDepth -cleardepth depth
glClearStencil -clearstencil stencil
glColor -color red green blue ?alpha?
glColorMask -colormask red green blue ?alpha?
glColorMaterial -colormaterial face mode
glCopyPixels -copypixels x y width height
glDepthFunc -depthfunc func
glDepthMask -depthmask flag
glDisable -disable capability
glDrawBuffer -drawbuffer mode
glDrawPixels -drawpixels photoImageName
glEdgeFlag -edgeflag flag
glEnable -enable capability
glEnd -end
glEndList -endlist
glEvalCoord1 -evalcoord1 u

glEvalCoord2 -evalcoord2 u v
glEvalMesh1 -evalmesh1 mode i1 i2
glEvalMesh2 -evalmesh2 mode i1 i2 j1 j2
glFinish -finish
glFlush -flush
glFog -fog param paramValue ? paramValue ... ?
glFrontFace -frontface mode
glFrustum -frustum left right bottom top near far
glHint -hint target mode
glInitNames -initnames
glLight -light light parameterName parameter ?parameter ... ?
glLightModel -lightmodel parameterName parameter ?parameter...?
glLineStipple -linestipple factor pattern
glLineWidth -linewidth width
glLoadIdentity -loadidentity
glLoadMatrix -loadmatrix m0,0 m1,0 m2,0 m3,0 m0,1 m1,1 m2,1 m3,1 m0,2 m1,2 m2,2

m3,2 m0,3 m1,3 m2,3 m3,3
glLoadName -loadname name
gluLookAt -lookat eyeX eyeY eyeZ centerX centerY centerZ upX upY

upZ
glMap1 -map1 target u1 u2 stride order pointCoord ?pointCoord ...

?
glMap2 -map2 target u1 u2 uStride uOrder v1 v2 vStride vOrder

pointCoord ? pointCoord ... ?
glMapGrid1 -mapgrid1 uN u1 u2
glMapGrid2 -mapgrid2 uN u1 u2 vN v1 v2
glMaterial -material face paramName param ? param ... ?
glMatrixMode -matrixmode mode
glMultMatrix -modelview mode
glNewList -newlist list mode
glNormal -normal x y z
glOrtho -ortho left right bottom top near far
gluPerspective -perspective fieldOfViewY aspectRatio zNear zFar
gluPickMatrix -pickmatrix x y width height
glPixelTransfer -pixeltransfer paramName param
glPixelZoom -pixelzoom xFactor yFactor
glPointSize -pointsize size
glPolygonMode -polygonmode face mode
glPopMatrix -popmatrix
glPopName -popname
glPushMatrix -pushmatrix m0,0 m1,0 m2,0 m3,0 m0,1 m1,1 m2,1 m3,1 m0,2 m1,2 m2,2

m3,2 m0,3 m1,3 m2,3 m3,3
glPushName -pushname name
glRasterPos -rasterpos x y ? z ? ? w ?
glReadBuffer -readbuffer mode
glReadPixels -readpixels x y photoImageName
glRect -rect x1 y1 x2 y2
glRotate -rotate angle x y z
glScale -scale x y z
glScissor -scissor x y width height
glShadeModel -shademodel mode
glStencilFunc -stencilfunc function reference mask
glStencilMask -stencilmask mask

glStencilOp -stencilop fail zFail zPass
glTexCoord -texcoord s ? t ? ? q ? ? r ?
glTexEnv -texenv target paramName param ? param ... ?
glTexGen -texgen coordinate paramName param ? param ... ?
glTexImage1D -teximage1d level border photoImageName
glTexImage2D -teximage2d level border photoImageName
glTexParameter -texparameter target paramName param ? param ... ?
glTranslate -translate x y z
glVertex -vertex x y ? z ? ? w ?

4. OGLwin widget commands

Although most of OpenGL’s capabilities could be exercised by using the eval and mainlist widget
commands, certain common tasks may be more easily programmed with the use of a few additional
commands. Below we describe all the available commands for the OGLwin widget.

pathName configure ?option? ?value? ?option value ...?

Query or modify the configuration options of the widget. If no option is specified, returns a list
describing all of the available options for pathName. If option is specified with no value, then the
command returns a list describing the one mentioned option. If one or more option-value pairs is
specified, then the command modifies the given widget option(s). Note: only the -width and
the -height options can be modified by the configure command; all others can only be
specified at the time the widget was created and cannot be modified afterwards.

pathName cylinder ?-displaylist dlist? ?-normals normals? ?-drawstyle drawStyle?
?-orientation orientation? ?-texture texture? baseRadius topRadius height slices
stacks

Renders a cylinder using the GLU facilities for quadrics (refer to the gluCylinder function). By
default, the rendering is compiled into a new display list whose number is returned as the result
of the widget command. If a display list number dlist is specified by means of the -
displaylist option, then that list is used. As a special case, if dlist is specified as none, the
rendering is performed immediately, and no display list is generated or overwritten. The
remaining options correspond to rendering styles as implemented by functions
gluQuadricNormals, gluQuadricDrawStyle, gluQuadricOrientation and
gluQuadricTexture, respectively. The possible option values are lowercase strings derived from
corresponding symbolic constants. Thus, for instance, -normals flat corresponds to calling
gluQuadricNormals with an argument equal to GLU_FLAT.

pathName deletelist listNumber

Deallocates the display list specified by listNumber.

pathName disk ?-displaylist dlist? ?-normals normals? ?-drawstyle drawStyle?
?-orientation orientation? ?-texture texture? innerRadius outerRadius slices loops

Renders a disk using the GLU facilities for quadrics (refer to the gluDisk function). All options
work in the same fashion as in the cylinder command.

pathName eval ?option ... option?

Sends the OpenGL commands defined by the given options (for a description of these, refer to the
previous section) directly to the OpenGL engine. Note that the effect of the these commands will
only be visible after the window is refreshed. This happens automatically after an Expose event is
handled by the widget, but can be forced programatically by issuing a redraw widget
command.

pathName mainlist ?option ... option?

Creates a display list containing the OpenGL commands defined by the given options (for a
description of these, refer to the previous section) and sets up the widget to call that list every
time an Expose or Configure event is sent to the corresponding window. By default, this main list
contains no OpenGL commands, i.e., nothing is drawn.

pathName newlist ?listNum? ?option ... option?

Defines a new display list containing the OpenGL commands specified by the given options (for
a description of these, refer to the previous section). If listNum is specified, the contents of the
corresponding display list is redefined. Otherwise, a new display list is allocated. The number
corresponding to the redefined or newly allocated display list is returned, so that it can be
invoked by means of the -call option. The newlist widget command combines the
functionality of OpenGL subroutines glGenLists, glNewList and glEndList.

pathName nurbssurface -uknots knot ?knot ...? -vknots knot ?knot ...? -controlpoints
coord ?coord ...? ?-type type? ?-uorder order? ?-vorder order?
 ?-samplingtolerance tol? ?-displaymode mode? ?-culling cull?

Implements a simple interface to gluNurbsSurface and other related GLU functions. It renders a
nurbs surface into a display list whose number is returned as the result of the command. The only
mandatory options are -uknots and -vknots which specify the sequence of knots in the u
and v directions, respectively, and -controlpoints, which is followed by the coordinates of
the control points. The remaining options control other parameters of gluNurbsSurface and
rendering parameters usually set with gluNurbsProperty. The default values for these are as
follows. -type map2vertex3 (i.e., GL_MAP2_VERTEX_3); -uorder 4 -vorder 4
(cubic polynomials); -samplingtolerance 50 (pixels); -displaymode fill (i.e.,
GLU_FILL); -culling no (i.e. GL_FALSE). Notice that the command takes care of
computing remaining parameters such as uStride and vStride by counting the number of knot
values and control point coordinates given.

pathName partialdisk ?-displaylist dlist? ?-normals normals? ?-drawstyle
drawStyle? ?-orientation orientation? ?-texture texture? innerRadius outerRadius
slices loops startAngle sweepAngle

Renders a partial disk using the GLU facilities for quadrics (refer to the gluPartialDisk
function). The options are the same as those of the cylinder command.

pathName project worldX worldY worldZ

This command provides access to the functionality of the gluProject OpenGL utility function.
worldX, worldY and worldZ are the world coordinates of a point and, as a result, a list containing
the corresponding three window coordinates is returned. The command takes care of retrieving
from the the other arguments of gluProject, such as the viewport, projection and modelview
matrices. It also takes care of the correction of the value for the y coordinate due to the fact that

the y axis in OpenGL is defined to run from the bottom to the top of the screen, while the window
coordinate system in X and MS-Windows defines y to run from top to bottom.

pathName redraw

Forces the window to be redisplayed. This involves calling the main display list (see the
mainlist widget command), flushing all pending commands by calling glFlush, and
swapping the front and back buffers if a double-buffered visual is being used.

pathName select hitBufferSize ?option ... option?

Evaluates the OpenGL commands corresponding to the given options in selection mode and
returns the contents of the hit buffer as a Tcl list. In other words, this command is equivalent to
calling glRenderMode (GL_SELECT), issuing the commands corresponding to each option
and then calling glRenderMode (GL_RENDER). A hit buffer containing hitBufferSize words is
dynamically allocated to store the contents of the hit buffer for the duration of the command.

The format of the returned Tcl list mimics that of the hit buffer. Each hit record corresponds to
one element of the list. The first element of the hit record is the number of names on the name
stack; the second (third) element is the minimum (maximum) z value of all vertices of the
primitives that intersected the viewing volume since the last recorded hit in floating point format;
and the remaining elements are the contents of the name stack at the time of the hit, with the
bottommost element first. See the discussion in Chapter 12 of the OpenGL Programming Guide
for more details.

pathName tesselate ?-displaylist dlist? ?-noedgeflags? x y z ... ?-contour x y z ...
?

Renders a complex polygon using the facilities of the GLU tesselator. The vertices of the polygon
are specified by their coordinates x, y and z. The -contour option can be used to specify the
different polygon boundaries (i.e, “holes”). By default. the rendering is compiled into a new
display list whose number is returned by the widget command. If the -displaylist option is
used, the specified dlist is used instead. In the special case where dlist is specified as none, no
display list is generated, and the rendering takes place immediately. Unless option -
noedgeflags is specified, the rendering will flag internal triangle edges, which is useful if
the polygon is rendered using a line style.

pathName sphere ?-displaylist dlist? ?-normals normals? ?-drawstyle drawStyle?
?-orientation orientation? ?-texture texture? radius slices stacks

Renders a sphere using the GLU facilities for quadrics (refer to the gluSphere function). The
options are the same as those of the cylinder command.

pathName unproject windowX windowY windowZ

This command provides access to the functionality of the gluUnProject OpenGL utility
function. windowX, windowY and windowZ are window coordinates and the result is a list with
the corresponding world coordinates. The handling of the remaining values necessary to compute
this operation is done in the same way described for the project command.

5. OGLwin extensions
The OGLwin widget provides a mechanism for incorporating user-defined extension commands written in
“C”. This mechanism is implemented by means of procedure RegisterTkOGLExtension with the
following syntax:

int RegisterTkOGLExtension (Tcl_Interp* interp,
 char* extname,
 TkOGLExtProc* extproc)

where

interp is a pointer to the main Tcl interpreter.

extname is a string that will designate the extension widget command.

extproc is a pointer to a procedure which implements the extension. This procedure should have the
following prototype:

int MyExtensionProc (Tcl_Interp* interp, int argc, char ** argv);

In order to register a given extension to the OGLwin widget, RegisterTkOGLExtension must be called
in the initialization code for the application, after the Tkogl package is loaded and initialized.

As an example, consider the initialization code used to build a glwish application where an extension
called MyExtensionProc is defined (see file tkAppInit.c in the distribution sources):

int Tcl_AppInit(Tcl_Interp *interp)
{
 Tk_Window main;
 main = Tk_MainWindow(interp);

 if (Tcl_Init(interp) == TCL_ERROR) return TCL_ERROR;
 if (Tk_Init(interp) == TCL_ERROR) return TCL_ERROR;
 if (TkOGL_Init(interp, main) == TCL_ERROR) return TCL_ERROR;

 if (RegisterTkOGLExtension (interp, "myextension", MyExtensionProc)
 != TCL_OK) return TCL_ERROR;

 Tcl_SetVar(interp, "tcl_rcFileName", "~/.wishrc", TCL_GLOBAL_ONLY);
 return TCL_OK;
}

This code defines a default extension built into glwish called "myextension" which will be available for
any OGLwin window created by glwish. Thus, you might be able to write a script with something like:

pack [OGLwin .gl]

.gl myextension foo bar

6. The gencyl extension

The generic cylinder extension provides a relatively straightforward way of rendering arbitrary surfaces.
The surface is obtained by sweeping a curve (termed a cross-section shape) along a path in 3D space.
Initially, the cross-section shape is a square of side length equal to 2 centered at the origin and lying over
the x-y plane. The movement of the cross-section is controlled by applying affine linear

transformations (e.g., translation, rotation, scale) to the cross-section shape. For each two consecutive
positions of the cross-section, triangles are rendered joining corresponding vertices and edges.

The syntax of the gencyl extension is:

pathName gencyl option ?option ...?

where pathName is the name of the OGLwin widget and option can be one of the following:

-cross x y z ?x y z ...?

Replaces the current cross-section shape with the polygon defined by the vertices with the given
coordinates x, y, z.

-identity

Replaces the current transformation matrix with the identity matrix.

-plot

Plots a new cross-section, i.e., applies the currently defined transformation matrix to the cross-
section shape. If it is not the first cross-section to be generated, draws triangles linking vertices of
this cross-section with corresponding vertices of the previous cross-section.

-polygon radius nSides

Replaces the current cross-section shape with a regular polygon of radius radius and nSides sides.
The polygon is centered at the origin and lies over the x-y plane.

-rotate angle x y z

Multiplies the current transformation matrix by a matrix corresponding to the rotation of angle
degrees around the vector defined by x y z. This is similar to the effect of procedure glRotate.

-scale x y z

Multiplies the current transformation matrix by a general scaling matrix defined by parameters x
y z. This is similar to the effect of procedure glScale.

-shade shadeModel

Defines the type of vertex normals generated for the triangles. If shadeModel is flat, the same
normal is generated for all three vertices, namely, the triangle normal. If shadeModel is
smooth (the default), vertex normals are averaged over all incident triangles.

-stitch stitchStyle

Defines the overall topology of the generated surface. If stitchStyle is loops (the default), cross-
sections are generated as closed curves, i.e., the first and last vertex of each cross-section are
linked together. If stitchStyle is ends, the first and the last generated cross-sections are linked
together. If stitchStyle is both the effect of loops and ends is combined. Finally, if stitchStyle
is none, no linking takes place. Generally speaking, both corresponds to the topology of a
torus, while none corresponds to the topology of a disk.

-texgen minS maxS minT maxT

Specifies the generation of texture coordinate values. minS and maxS refer to the range of values
for texture coordinate s, whereas minT and maxT refer to the range of values for texture
coordinate t. Texture coordinates are generated so as to have the s coordinate varying along each
cross-section, while the t coordinate is associated with the path each point of the cross-section
shape describes as each cross-section is plotted.

-translate x y z

Multiplies the current transformation matrix by the translation matrix defined by x y z.

Notice that gencyl does not use the model view matrix to compute transformations. In fact, the only
OpenGL commands emitted by gencyl are glNormal, glVertex and glTexCoord.

The result string returned by the gencyl command is a property list of the form

{displaylist d } {min minX minY minZ} {max maxX maxY maxZ}

where

• d is the number of the display list generated. This number can be used in conjunction with the
-call option command to display the surface.

• minX minY minZ and maxX maxY maxZ define the coordinates of a bounding box for all the
generated vertices. These can be used in order to calculate apropriate viewing parameters.

As an example, consider the following script that renders a 8-sided approximation of a circular cylinder of
unit height and radius:

pack [OGLwin .gl]
set l [.gl gencyl -polygon 1 8 -plot \
 -translate 0 0 1 -plot]
set d [lindex [lindex $l 0] 1]
.gl eval -matrixmode projection \
 -loadidentity \
 -perspective 30 1 1 10\
 -matrixmode modelview \
 -loadidentity \
 -lookat 5 5 5 0 0 0 0 0 1\
 -enable light0 \
 -enable lighting \
 -enable depthtest
.gl main -clear colorbuffer depthbuffer -call $d

